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Abstract-A non-linear vector equilibrium/constitutive differential equation governing an elastica
is directly simulated without decomposition. The solution is obtained using repeated applications
of a truncated Taylor's expansion to advance along the elastica. Lacking a vector data type in
Fortran 77. the complex data type is used for direct two-dimensional simulations. Rapid convergence
and good accuracy are observed for sufficiently small increments using single precision. Numerical
results for both nodal and undulating elastica are presented. Good agreement is shown with existing
alternative solutions.

INTRODUCTION

The finite deflection of uniform beams may be obtained using the Euler-Bernoulli law of
bending. The approximate solutions. in series form. ofa uniform. initially straight cantilever.
loaded with a single vertical force at the free end. have \x.-cn given by Boyd (1924) and by'
Gross and Lehr (1938). The exact, closed-form solutions were given by Barten (1944) and
in the elliptic function form by Bisshopp and Drucker (1945). The solution ofelastica using
the principle ofclastic similarity was developed by Frisch-Fay (1961 a, b, I962a) who applied
it to some cantilever cases. By integrating the Bernoulli-Euler equation. Frisch-Fay (1962b)
also gave another closed-form solution of a cantilever with two vertical forces. The exact
solution for a straight bar on unyielding knife-edged supports, without and including
friction was given by Frisch-Fay (1962b). The same problem, without friction, was solved
by Freeman (1946). Wijngaarden (1946), Conway (1947), and Gospodnetic (1959). The
finite dellection of a centrally loaded bar supported by two pivoted end links Were obtained
by Gorski (1974). Numerical analysis for such problems has been performed by Seames
.lOd Conway (1957). Wang e/ al. (1961), Wang (1969), and Yang (1973). Numerous finite
dement solutions for such problems are available and a brief account was given by Yang
and Saigal (1984). Saje and Srpcic (1985) recently presented a large deformation beam
theory based on the uniaxiality of the strain tensor.

The solutions presented in the literature mentioned above are complicated by several
substitutions and transformations required which tend to obscure the physical nature of
the problem. The formulations for these solutions are based on equations of equilibrium
written in terms of the individual displacement components. In this paper a straightforward
procedure. for which the equations of equilibrium are both expressed and solved directly
in thdr vector form, is prescnted. The position vector for a point on the elastica is expressed
in tcrms of a Taylor's series expansion about a neighboring point on the elastica. An
incremental marching procedure is then used to advance along the entire length of the
elastica. Thc complex data type capabilities are used in programming on the computer for
the solution of two-dimensional equilibrium equations directly in their vector form. The
present method is applicable to both nodal and undulating elastica. Numerical examples
are presented and compared with existing alternative results to demonstrate the effectiveness
of the present method. A good convergence of the series for solving large displacement
problems is seen.

t Author to whom all correspondence should be addressed.
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Fig. I. The elastic curve.

THE GOVERNING VECTOR EQUATIONS

For the elastic curve shown in Fig. I. let the distance along the curve s be the
independent variable and the position vector R to point P be the dependent variable. The
derivative

R' = dR
ds

(I)

is the local unit tangent directed in the positive s-direction. The second derivative R" has
the local curvature (1/p) as its magnitude and is direl.:led towards the local I.:entl:r of
curvature C. The governing equation for the c1astil.:a then bel.:omes

M
R" = R'x

EI
(2)

where M is the 10l.:al bending moment at point P, EI the bending rigidity, and the eross ( x)
denotes the vel.:tor cross product. It is noted that eqn (2) is independent of the vel.:tor
coordinate system. A linearly c1astil.: material is assumed whidl, if anisotropil.:. has a
prinl.:ipal axis I.:oinl.:ident with the axis of the dastil.:a. It is also assumed that neither is the
neutral surface appreciably warped due 10 the ellel.:ts of Poisson's ratio nor is any eross­
sec.:tional surface appredably warped due to the ellel.:ts of local transverse shear.

The local bending moment can be expressed as a summation of cross products

(3)

where F, and M, arc the force and bending moment. respectively, in any direction acting on
a point on the elastica corresponding to the position vector rio

SERIES SOLUTION

The solution for the position vector R(s+~s)can be expressed by using Taylor's series
expansion as

(4)

(5)



A direct vector simulation for the analyses of nodal and undulating elastica 203

F

L

(a)

y

F

(b)

Fig. 2. An initially straight t>cam on frictionless knife-edged supports under a central load P.

where 605 is the incremental distance along the elastic curve, and Rft(s) denotes the nth
derivative of R(.~) with respt.'Ct to s and can be obtained by successive differentiation ofeqn
(2). The truncation point of eqns (4) and (5) depends on the behavior of the higher order
deriviltivcs. If the expansion arc truncated with an inadequate number of terms, the requisite
mesh size for a desired accuracy bt.'Comes so small that it is never accomplished in single
precision due to roundoff errors. Also, eXt.'Cution time becomes excessive. For all of the
examples presented in this study, truncation of eqns (4) and (5) at n = 6 was found to yield
adequate accuracy with reasonably short execution times.

SOLUTION PROCEDURE

For all the simulations which can be cast as initial value problems, and all of the
examples which follow can be so treated, the solution procedure begins at s == 0 where
the boundary conditions are known. The method then procceds in increments tis of the
independent variable s along the elastic curve until the entire curve is spanned. Successively
smaller values of tis are chosen until the simulation results become insensitive to further
reductions in tis. The end of a curve is identified by the boundary condition at that point.
Shooting methods, which are iterative in nature, are employed to determine the point
satisfying this boundary condition. This procedure is demonstrated in the following sections
for large displacements of elastic beams under various loading and boundary conditions.

A. Straight beam on frictionless unyielding knife-edged supports
Consider a straight beam supported on frictionless knife-edged supports under a central

load as shown in Fig. 2(a). Although the actual length of the beam lying between fixed
supports varies with the deflection curve, the length L is defined as the distance between
the supports. Thus, the length and center deflection, as defined, do not vary simultaneously.

Substituting eqn (3), for a single force and for r/ = 0, into eqn (2), we have

EIR" = (R x F) x R'.

The dimensionless parameter is defined as

(6)
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( F)L~
0= - R

£1

and the dimensionless independent variable as

(F)I~
Cl = £1 s.

Using these definitions we obtain

dR dO
-=-=0'
ds dCl

Governing eqn (6). using eqns (9) and (10) can be written in dimensionless form as

0" = (0 x j) x 0'

with the boundary conditions

0(0) = 0 and 0'(0) = i

where i,j, k arc the unit vectors in the coordinate directions x, y, and =, respectively.
Also. from Fig. 2(b), we have

P = 21" sin YJ = 2FR'· i

. . Rx R'o= R SIO /J = _.- -_._­
R

since the curve is two-dimensional. and

L = 2R cos /J = 2R·R'.

Using eqns (7)-( 15), we obtain

and

e5 lOx 0'
L = 2R (f·-ii-·

(7)

(8)

(9)

(10)

(1 1)

( 12)

(13 )

( 14)

( 15)

( 16)

( 17)

The solution procedure starts at cl = 0 (corresponding to the origin of Fig. 2(b) which
is at a beam support) with the boundary conditions given by eqn (12). The iterative
solution proceeds in increments of 6.:x using eqn (II) and its derivatives substituted into the
dimensionless forms of eqns (4) and (5). At the end of each iteration, the dimensionless
position vector 0 can be interpreted as representing the midpoint location of a new beam
for which the dimensionless load and deflection are p = PL ~/£1 and e5!L. respectively, as
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Fig. 3. Load-deftection curve for centrally loaded beam on frictionless knife-edged supports.
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defined in eqns (16) and (17). Thus. each iteration produces a new plotted point for Fig. 3.
This problem was earlier studied by Frisch-Fay (1962a) for nodal elastica and his results
arc plotted in Fig. 3 for comparison. A good agreement of results is seen. For the present
study. the solution was further extended. Multiple segments of the load-deflection curve
were obtained for each quadrant and some initial segments are shown in Fig. 4.

Several deflection profiles corresponding to the curve in Fig. 4 are shown in Figs 5-8.
The elastic beam sags under the load acting downward until a self-supporting deflection
profile is obtained corresponding to p = O. The load is then applied in the reverse (upward)
direction to maintain the beam in equilibrium. As the solution marches further, interfering
deflection profiles are obtained as shown in Fig. 6. These deflection profiles corespond to
the load-dellection segment in the third quadrant. On further increasing a, undulating
curves involving inflection points are obtained as shown in Fig. 7. The points corresponding
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Fig. 4. Multiple segments of the load-deftection curve for centrally loaded beam on frictionless
knife-edged supports.
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Fig. 5. Detlection profiles for p = 6. O. and -0.85. respectively.
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Fig. 6. Deflection prolilcs for p = -0.564 and -0.14.1. respectively.

to P = 6.69 and 29.05 lie in the second quadrant while the point for p = 4.34 lies on the
next segment in the third quadrant. These load values signify the load that must be applied
to maintain the beam in equilibrium if the beam is deflected in the shape of the del1ection
profiles shown in Fig. 7. Finally deflection profiles corresponding to a segment in the fourth
quadrant of Fig. 4 are shown in Fig. 8. The elastic curves obtained are interfering undulating
elastica.

B. Call1ilever beam with normal force at free eml
This situation is identical to Case A above with the addition of a coordinate trans­

formation and a redefinition of some of the parameters (see inset on Fig. 9). The midbeam
point and the local normal for Case A become the "wall" for this case, the old load F
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Fig. 7. Detlection profiles in the third quadrant for p = 6.69. 29.05. and 4.34, respectively.
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Fig. 8. Detlection profiles in the fourth quadrant for p '=' 9.71 and 13.54. respectively.

becomes the new load P and the new L is the actual beam length obtained by integrating
along the beam during the iteration process. The initial conditions are the same, and. as
before. each iteration yields dimensionless data which can be interpreted as decribing the
behavior of either a new beam or the same beam under different loading conditions.

Note the following equivalences: either of the curves in Fig. 6 is approx.imately equi­
valent to the curve for load PI in Fig. 10; the curves for loads P2 and Pl in Fig. 7 are
approximately equivalent to the curves for loads P2 and Pl. respectively. in Fig. 10. This
problem has been studied earlier by Saje and Srpcic (1985) and their solutions arc also
plotted in Figs 9 and 10 for comparison. A good agreement in results is seen.

C. ('llf/tilt'l'cr hC'am ....ith moment at free end
This ease is included to provide a simple test of the iteration error which necessarily

accumulates during the simulation process. Governing eqn (2) is simplified by the condition
that the bending moment is constant.
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Fig. 10. Dellection profiles for cantilever beam with normal force at ffl,:e end.

The following transform'1tions .1re introduced:

M
0= ···R

EI

M
':t. = Els

( 18)

( 19)

where ':t. is the dimensionless independent variable that is incremented in steps to obtain the
solution. The governing equation is then written in dimensionless form as

0" = k xO' (20)

where k. as before. is the unit vector in the =-direction.
As a test the simulation was iterated for an entire circle and the discrepancy between

the initial point and the final point was investigated. The resulting relative error was defined
as the absolute discrepancy divided by the integrated circumference along the circle which.
itself. was checked against the theoretical circle diameter.

The most convenient boundary conditions are those for Cases A and B

0(0) = 0 and 0'(0) = i.

The results are shown in Table I. Note that carrying three derivative orders in the simulation
yields a relative accuracy of approximately four significant figures. whereas. when five
derivative orders are carried. the machine error in single precision completely masks the
simulation error.

D. Cafltill!t'ef heam with vertical force at free end
A cantilever beam with a concentrated vertical force at its free end is considered next.

From Fig. II

(21 )

and the elastic beam equation can be written as
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Table I. Cantilever with moment at free end

6
x Simulated Exact Simulation

(deg) 9. 9, O. 9y error

Case I: N = 60. M = 3. L = 3
ooסס0.0 ooסס0.0 ooסס0.0 ooסס0.0 ooסס0.0 ooסס0.0

18.000 0.30901 0.48958E-OI 0.30902 0.48943E-01 0.15029E-04
36.000 0.58777 0.19101 0.58779 0.19098 0.30046E-04
54.000 0.80898 0.41224 0.80902 0.41221 0.45094E-04
72.000 0.95100 0.69101 0.95106 0.69098 0.60164E-04
90.000 0.99993 ooסס.1 ooסס.1 ooסס.1 0.75179E-04

108.00 0.95097 1.3090 0.95106 1.3090 0.90215E-04
126.00 0.80893 1.5877 0.80902 1.5878 0.10527E -03
144.00 0.58771 1.8089 0.58779 1.8090 0.12033E-03
162.00 0.30896 1.9509 0.30902 1.9511 0.1354IE-03
180.00 -0.22626E-04 1.9999 -0.32584E-06 OOסס.2 0.15047E-03
198.00 -0.30898 1.9509 -0.30902 1.951 I 0.16550E - 03
216.00 -0.58769 1.8089 -0.58779 1.8090 0.18058E-03
234.00 -0.80887 1.5877 -0.80902 1.5878 0.1955OE-03
252.00 -0.95086 1.3089 -0.95106 1.3090 0.21044E-03
270.00 -0.99978 0.99998 OOסס.1- ooסס.1 0.22544E-03
288.00 -0.95082 0.69104 -0.95106 0.69098 0.24045E - 03
3()(i.00 -0.80880 0.41235 -0.80902 0.41221 0.25547E-03
324.00 -0.58761 0.19119 -0.58778 0.19098 0.27043E-03
342.00 -0.30891 0.49207E-OI -0.30902 0.48943£-01 0.2854IE-03
360.00 0.25168E-04 0.29949E-03 O.l6054E-05 0.12886£-11 0.3004IE-03

el.... =4.78 X 10- 3

C

Case II : N = 60. M = 3. L = 5
O.()()OOO ().O()()()() o.()()()()() O.()()()()() ooסס0.0 ooסס0.0

Ill.()OO ().30'J02 0.411943E-OI 0.30902 OA1l943E-01 0.74506E-08
36.000 0.511779 0.19098 0.58779 0.19098 ooסס0.0

54.000 0.80902 0.41221 0.80902 0.41221 0.59605E-07
72.00() 0.95106 0.69098 0.95106 0.69098 ooסס0.0

'Xl.OOO 1.0000 I.()OOO 1.0000 1.0000 0.1192IE-06
1011.I)() 0.95106 I.3llt)O 0.95106 1.3090 0.59605E-07
126.1)() 0.80902 1.5878 0.80902 1.5878 0.13328E-06
144.00 0.58779 1.8090 0.58779 1.8090 0.59605E-07
162.00 0.30902 1.9511 0.30902 1.951 I 0.1490IE-06
180.00 -0.82275E-07 OOסס.2 -0.32584E-06 OOסס.2 0.24357E-06
198.00 -0.30902 1.9511 -0.30902 1.9511 0.29802E-06
216.00 -0.58779 1.8(Jl)() -0.58779 1.8090 0.32098E-06
234.00 -0.80902 1.5878 -0.80902 1.5878 0.50926E -06
252.00 -0.95106 I.3()tJO -0.95106 1.3090 0.59605E -06
270.00 OOסס.1- ooסס.1 ooסס.1- ooסס.1 0.69765E-06
288.00 -0.95106 0.69()t)8 -0.95106 0.69098 0.84714E-06
306.00 -0.80902 0.41221 -0.80902 0.41221 0.94243E-06
324.00 -0.58779 0.19098 -0.58778 0.19098 0.II309E-05
342.00 -0.30902 0.48943E-OI -0.30902 0.48943E-OI 0.13114E-05
360.00 0.16765E-06 -0.4046IE-06 0.16054E-05 0.12886E-II 0.14936E-05

6~ 2.38 x 10- 1

N = No. of iterations in full circle.
M = No. of iterations per output.
L = No. ofderivative orders taken.

EIR" =MxR'

= -R' X (Mo+R X Fo).

The non-dimensional parameters are

(
FO)1/2 (Fo)1/2

a = EI S, 8 = El R

and

(22)
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(23)

where :x is the dimensionless independent variable. Equilibrium eqn (22) can then be written
as

0" = (fJk +0 x j) x 0'

with the bount!<try conditions

0(0) = 0 and 0'(0) = i.

The non-dimensional dellection and load values arc obtained as

and

FL 2
,""" = IXr­

E/

where Or and <5, arc the values of 0 and <5 at the free end.
For a given value of jJ and selected values for .:l::x and tolerance E. the marching procedure

starts with the boundary conditions at IX = 0 until the following condition corresponding
to the free end is satisfied:

0' x 0" = o. (24)

The ex value corresponding to this condition was found using an iterative secant search
root-finding procedure. In the present two-dimensional analysis. the quantity (0' x 0") is a
scalar and. thus. the condition given by eqn (24) simplifies the root-finding procedure. The
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condition, 8" = 0, is, however, a sufficient criterion. the load-deflection curves for both
horizontal and vertical deflections are shown in Fig. t 1. The elliptical integral solution due
to Bisshopp and Drucker (1945) is also plotted in Fig. 11 for comparison and a good
agreement is seen.

CONCLUSIONS

A straightforward numerical procedure for finite deflections of deep elastic beams is
presented. The formulation involves writing the equilibrium equations in vector notation.
These equations are then solved directly in their vector form without the need to decompose
them into their individual component scalar equations. The solution is expressed as a
Taylor's series expansion about a known point. The solution procedure is an incremental
marching scheme which starts from the known boundary conditions and proceeds along
the elastic curve using the series expansion. Numerical results are obtained for an elastic
beam on knife-edged fixed supports; and for a cantilever under a normal force, a moment,
and a vertical force, respectively, at its free ends. The results obtained are in good agreement
with existing alternative solutions which demonstrates the accuracy of the present work.
This procedure is especially attractive due to its simplicity. It does not involve numerous
substitutions and transformations which have. in earlier solutions, masked the physical
nature of the problem. A three-dimensional analysis ofelastica should prove to be no more
difficult than it is in two dimensions using the current scheme. The coding using Fortran.
however, will be more complicated due to the lack of a vector data type.
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